韧性断裂(韧带撕裂可以自行恢复吗)
文|美特高分子 硬顶 原创
一、抛砖引玉
新加坡聚烯烃SPC的聚丙烯PP AW564性能如下表:
其中断裂伸长率250%,低温切口冲击强度5kg-cm/cm,用在洗衣机滚筒里面的,而用在保险杠的PC/PBT中有高抗冲的,但断裂伸长率却没有那么高。这两种材料中,为什么PP料中的时候要那么高的断裂伸长率,这是为什么的呢?PC/PBT中的呢?
二、断裂伸长率的概念及与分子结构的关系
2.1 断裂伸长率与冲击强度关系
冲击强度可以看做单位截面破坏时消耗的能量。撇开面积因素,我们考察能量。能量=力×距离。力是强度因素,就是应力;距离就是形变因素,比如断裂伸长率什么的。这样,一个冲击强度高的材料,它可能是强度因素显著(拉伸强度大),而断裂伸长率中等或小。所以说,一个冲击高的材料,断裂伸长率可能不大。
断裂伸长率是大是小,取决于基体树脂分子链的柔性。象PE、PP的分子链都是柔性分子,断裂伸长率都是500以上,当然如果加入很多粒径细的滑石粉,聚合物分子会受到填料对其构象变化的限制,从而导致伸长率降低至几十个。玻纤增强PP的伸长率常有几个。PC/PBT这种材料,韧性可以较高,也是高抗冲材料,但是PC、PBT都是分子链比较刚性的材料,形变率并不大。所以,冲击强度和断裂伸长率不是简单的正比关系,只有两种材料的结构类似时才可以通过冲击强度比较断裂伸长率。
2.2 断裂伸长率与分子结构关系
说断裂伸长率,我觉得用分子量,和聚合度这些表示相关性更加好应该还跟聚集态结构,共混体系的相结构有关。
断裂伸长率与分子量、聚集态、相结构多少也是有关系的,但是从根本上讲,还是与大分子柔性有关。下面以PP为例说明。
2.2.1 与分子量有关
但是大分子柔性已经考虑了分子量因素,分子量大的分子柔性大。就像一块小的钢板,你很难使其变形,但是大的钢板自己都忽悠忽悠的,这是尺度变大其刚度下降的类比例子。身材苗条的姑娘显得婀娜多姿也是同样道理。
2.2.2 聚集态也包含在分子柔性里
结晶PP与非晶PP(熔体急冷可得),尽管结晶PP的分子链柔性下降,但是由于其在拉伸时构象变化可逆,仍然可以看成分子柔性相同,这时结晶不结晶不会影响其断裂伸长率的。取向态的PP,如BOPP,断裂伸长率很小,这时它的分子刚性也很大,它绷直了以后缺乏了柔性。多相体系方面,PP与PP+GF,这两个材料的断裂伸长率有很大差别。这是聚集态不同造成的,但其本质就是GF限制了PP分子链的运动性,使PP柔性下降。最后一个非PP体系--PVC。硬PVC没有或很少增塑剂,PVC分子之间范德华力很大,分子链构象受限,分子链柔性差,所以断裂伸长率只有数十个。增塑后的软PVC,则因增塑剂的加入“隔离”了PVC分子链之间的范德华力作用,PVC分子链互相牵制受限的状态被解除(不是完全解除),PVC分子链柔性大大提高,于是断裂伸长率增大到100-500%。这些事例充分说明,无论是基体树脂的聚集态,还是塑料的多相结构,其断裂伸长率的根本影响因素都可以归结为分子链的柔性。
2.2.3 为什么分子链的柔性会决定断裂伸长率呢?
因为拉伸变形的过程本质上就是一个“消耗”高分子链柔性(构象变化能力)的过程。
三、断裂伸长率的测试要素
3.1 拉伸速度
塑料属于粘弹性材料,它的应力松弛过程与变形速率密切相关,应力松弛需要一个时间过程。当低速拉伸时,分子链来得及位移重排,呈现韧性行为,则出现为;拉力强度减少,而断裂伸长率增大。高速拉伸时,高分子链段的运动跟不上歪理作用的速度,呈现脆性行为,则出现为;拉伸强度增加,断裂伸长率减少。所以不同品种的塑料拉伸速度的敏感程度不同。硬而脆的塑料对拉伸比较敏感,一般采用较低拉伸速度,韧性对拉伸速度敏感性较小,可以采用较快的拉伸速度。
3.2 产品微小的瑕疵
实际上即使是相同材料,不同样条之间的断裂伸长率也是有波动的,因样条内部有缺陷,应力集中物和内部微裂纹导致材料内部变形集中。